
www.umbc.edu

CMSC202
 Computer Science II for Majors

Lecture 06 –

Classes and Objects

Dr. Katherine Gibson

Based on slides by Chris Marron at UMBC

www.umbc.edu

Last Class We Covered

• Pointers
– Review

– Passing to Functions

• Using pointers to pass arrays to functions

– Including C-Strings

• References

– Creating

– Passing to Functions

2

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To understand the purpose and benefits
of Object Oriented Programming

• To learn about classes in C++

– Class Methods (Functions)

4

www.umbc.edu

Programming and Abstraction

• All programming languages provide some
form of abstraction
– Also called “information hiding”
– Separates code use from code implementation

• Procedural Programming
– Data Abstraction: using data structures
– Control Abstraction: using functions

• Object Oriented Programming
– Data and Control Abstraction: using classes

5

www.umbc.edu

Procedural vs OOP Examples

• Procedural

– Calculate the area of a
circle given the
specified radius

– Sort this class list
given an array of
students

– Calculate the
student’s GPA given a
list of courses

6

• Object Oriented

– Circle, you know your
radius, what is your
area?

– Class list, sort your
students

– Transcript, what is this
student’s GPA?

www.umbc.edu

What is a Class?

• According to the dictionary:

– A set, collection, group, or configuration
containing members regarded as having
certain attributes or traits in common

• According to OOP principles:

– A group of objects with similar properties,
common behavior, common relationships with
other objects, and common semantics

7

www.umbc.edu

Blueprints

• Classes are “blueprints” for creating objects

– A dog class to create dog objects

– A car class to create car objects

– A shoe class to create shoe objects

• The blueprint defines

– The class’s state/attributes

• As variables

– The class’s behaviors

• As methods

8

www.umbc.edu

Objects

• Each instance of a class is also called
an object of that class type

• You can create as many instances of a class as
you want

– Just like a “regular” data type, like int or float

– There is more than one dog, or car, or shoe

9

www.umbc.edu

Encapsulation

• Encapsulation is a form of information
hiding and abstraction

• Data and functions that act on that data are
located in the same place (inside a class)

• Goal:

– Separate interface from implementation
so that someone can use the code without
any knowledge of how it works

10

www.umbc.edu

Class Declaration Example

class Car

{

public:

bool AddGas(float gallons);

float GetMileage();

// other operations

private:

float m_currGallons;

float m_currMileage;

// other data

};

Methods

Data

Class Name

Protection Mechanism

Protection Mechanism

www.umbc.edu

Class Rules – Coding Standard

• Class names
– Always begin with capital letter
– Use mixed case for phrases
– General word for class (type) of objects

• Ex: Car, Boat, Building, DVD, List, Customer, BoxOfDVDs, …

• Class data (member variables)
– Always begin with m_

• Ex: m_fuel, m_title, m_name, …

• Class operations/methods
– Always begin with capital letter

• Ex: AddGas(), Accelerate(), ModifyTitle(), RemoveDVD(), …

www.umbc.edu

Methods and Member Variables

• Classes encapsulate both data and functions

– Class definitions must contain both

• Member variables are the data of a class

– Its attributes, or characteristics

– e.g., breed of Dog, size of Shoe, make of Car

• Class methods are used to act on that data

– e.g., Play() with Dog, Inspect() a Car

13

www.umbc.edu

Example of Using a Class

// Represents a Day of the Year

class DayOfYear

{

 public:

 void Output();

 int m_month;

 int m_day;

};

// Output method – displays a DayOfYear

void DayOfYear::Output()

{

 cout << m_month << "/" << m_day;

}

// Code from main()

DayOfYear july4th;

july4th.m_month = 7;

july4th.m_day = 4;

july4th.Output();

www.umbc.edu

Method Implementation

void DayOfYear::Output()

{

 cout << m_month

 << "/" << m_day;

}

Class Name

Scope Resolution
Operator: indicates
which class this
method is from

Method Name

Method
Body

www.umbc.edu

Separating Classes into Files

// Represents a Day of the Year

class DayOfYear

{

 public:

 void Output();

 int m_month;

 int m_day;

};

// Output method – displays a DayOfYear

void DayOfYear::Output()

{

 cout << m_month << “/” << m_day;

}

Class Definition

Goes in file
ClassName.cpp

(DayOfYear.cpp)

Class Declaration

Goes in file
ClassName.h

(DayOfYear.h)

www.umbc.edu

Using Classes

// Code from main()

DayOfYear july4th;

july4th.m_month = 7;

july4th.m_day = 4;

july4th.Output();

Dot Operator

Object Name
(Variable)

Class Methods
and Members

Constructor
(we’ll cover
this soon)

www.umbc.edu

Dot and Scope Resolution Operator

• Used to specify "of what thing" they are
members

• Dot operator:

– Specifies member of particular object

• Class method or member variable

• Scope resolution operator:

– Specifies what class the function’s
definition belongs to

www.umbc.edu

More about Encapsulation

• Class methods do not need to be passed
information about that class object

– Notice that the Output() method does not have
any parameters

• Class methods are called on a class object

– They know everything about that object already

• Remember, classes contain code and data!

19

www.umbc.edu

Time for…

20

www.umbc.edu

Livecoding Exercise

• Create a Rectangle class with

– Member variables for height and width

– Class methods to:

• Calculate area

• Calculate perimeter

• Check if it’s square

• “Rotate” the rectangle

• Create both Rectangle.h and Rectangle.cpp

21

www.umbc.edu

Announcements

• Project 1 has been released

• Found on Professor’s Marron website

• Due by 9:00 PM on February 23rd

• Get started on it now!

• Make sure to read and follow the
coding standards for this course!

• Next time: more on Classes and Objects

22

